
Software Testing Document

Team Clean Carbon

April 7, 2023

Sponsor: Allie (Alexander) Shenkin

Mentor: Vahid Nikoonejad Fard

Members: Curtis McHone, Richard McCue, Shayne Sellner,

Justin Stouffer, Jonathan Bloom
Version 1.0

Accepted as baseline testing steps for the project:

_________________________ _________________________

Sponsor Signature Team Lead Signature

Table of Contents

Introduction 3
Unit Testing 4
Integration Testing 6
Usability Testing 8
Conclusion 9

Introduction
Climate change has become a growing concern as the overabundance of carbon dioxide and

other greenhouse gases in the atmosphere causes a rise in global temperatures. To offset their

carbon footprint, big companies invest in climate change projects by purchasing carbon credits.

The carbon market is relatively new and not strictly regulated; it was valued at $500 million in

2020 and is predicted to grow exponentially to $90–480 billion in 2050. However, the market is

not easily accessible to consumers and companies, and estimates about reforestation statistics

must be obtained by contacting individuals who manage reforestation plots. Our sponsor Allie

Shenkin's research finding helps consumers estimate reforestation statistics and make carbon

credits 30% more profitable, motivating developers to invest in reforestation projects. Allie and

his team developed a proof-of-concept tool to implement this new research finding. However,

further development is necessary to create a more reliable and efficient solution. Our team was

tasked with this issue so that we may create a more robust, reliable, and faster-working tool to

bring a new level of transparency and accessibility to the carbon market.

To ensure the accuracy and reliability of our solution to this issue, we need to set up a software

testing suite. Software testing is a critical aspect of software development that assesses the

quality and functionality of software applications. This will allow the developers to identify any

defects, errors, or gaps in the software's functionality. Software testing can be done manually or

through automated tools. This document will outline our overall plans for software testing within

our project.

To ensure the quality of our project, we will employ many different software tests, ranging from

login access to data consistency across the entire project. We will first start by ensuring that our

login information is secure and cannot be accessed by nefarious methods, as well as ensuring that

someone who is not registered with our service cannot gain access to it.

On the front end of the project, we need to verify that the polygon coordinates and area are

correct, as well as ensure that the year is not different from the one the user chose. In the backend

of our project, we will test to ensure that the polygon that we are cutting out of the raster is the

same as the sliver of the raster that we receive. We will also make sure that the average value of

this raster sliver is accurate by conducting manual testing. Because of the nature of our program,

most of our testing will have to be done manually, as the coordinates calculation of the polygon,

the passing of data between the front and back ends, the cutout of the raster, the average value

calculation, and the total carbon uptake calculation will be automated and do not require separate

input from the user. Due to this, we will need to ensure each part is working properly and does

not create an issue that moves down the line of computation. We will then test and ensure that the

data we are communicating between the front and back ends of our project is consistent and

accurate. Due to the connection between the front and backend and how much the front and

backend rely on each other, each will be heavily tested to create a robust product.

Unit Testing

Unit testing is a process done in software development that allows for the testing of specific

pieces, functions, or function calls. A unit is the smallest testable piece of software. Most unit

tests consist of three main stages: planning, analyzing the cases, and writing the tests. Testing a

unit allows the software to be reliable and robust. Unit tests work by using predetermined values

to compare against the values of the output of the software unit. The software unit will operate

on these predetermined values and return the output. The unit test will then compare the output

to the value the developer gave the unit test. If the values match, then the unit passed; if the

values don't match, then there is a bug or error within the unit. To ensure there are no errors

carried forward within the code, each unit is tested individually, as well as provided with

different inputs depending on what the unit needs to be tested for.

Our goals for unit testing our software are to ensure that our code is accurate and reliable. Some

areas of our software that we know may not be reliable and need to be tested are the correct

coordinates, map projection, CO2 uptake amount, and the year of prediction selection. Our hopes

for writing and implementing unit tests are to find bugs within our code, confirm our polygon

coordinates, and ensure our predictions are accurate according to our rasters. Once every unit of

the software is tested and proven accurate, we can say that our software, at its core, is reliable.

Integrating these units together is still another area of concern, which will be discussed later.

One of the software tools that we are going to use to support our unit testing is included in our

Django framework, and it uses the standard Python library, unit test, to create the unit tests.

Django implements its own version of Python’s test library, which makes it easy for us to use, as

we do not need to add any more dependencies to our code.

There are a few bigger units of our software system that we want to focus on for unit testing, but

more generally, we want to test every individual unit of the software, no matter the size. The

frontend of our website has a few units that need to be tested. These are ensuring that the

polygon coordinates are accurate compared to our projection and that the area measurement of

the polygon is accurate. Our backend also has some units that need to be tested. The main unit

that needs to be tested in the backend is ensuring that our prediction system is computing the

correct number of carbon credits. This is the largest part of our backend, and it is going to need

the most testing by far.

As the frontend is in javascript, HTML, CSS, and OpenLayers, it is much harder to set up robust

unit tests compared to the backend, which is just Python. To test for correct coordinates, we will

have a specified polygon that we know the coordinates of, and then draw the same polygon on

our software and use a unit test to check that the coordinates are the same. Along the same lines

as the polygon coordinates, we need to make sure the polygon tool and map view are using the

same projection of coordinates so that the user doesn’t draw a polygon where they don’t intend

to. In order to test that area calculations are correct, we will have a predetermined polygon whose

area we know and then use our area tool to calculate the area. We will then use a unit test to

check if the areas are the same.

Unlike the frontend, the backend is written purely in Python, using the framework Django, which

makes unit testing a bit easier in most cases. Just like the frontend, we cannot take advantage of

everything that unit testing has to offer, as we need to do more static analysis outside of our

software. The main component that needs to be tested on the backend is our global prediction

system. We need to ensure that the results that the global prediction system is coming up with are

as accurate as possible. The way we are going to test this is very similar to the frontend. We are

going to get a polygon from the frontend and bring that into QGis. We will cut out the area in the

global raster that the polygon covers and do the global prediction on that plot of land by hand. If

the results that we get by hand are the same as the results of our global prediction system, we can

assume that our global prediction system is accurate.

The final step in unit testing for our project is to compare all of our results against the prototype

software that our project sponsor has created. He has mentioned that this prototype is not perfect,

however, so this comparison will be another layer of testing, but it won’t be nearly as accurate as

the methods stated above.

Through the use of all of the testing methods mentioned above, as well as further testing

regarding invalid inputs, we can prove the robustness of our software units. Once each unit of the

software is tested to exhaustion, we can be confident that each unit is correct and ready for

integration testing.

Integration Testing
Integration testing is the procedure of making sure that the interactions and data exchanges

between the major modules of our system are occurring correctly and maintaining accuracy.

During our integration testing, we need to make sure that all of our functions are returning the

correct value types (string, boolean, integer, character, etc.), as well as ensuring that all of the

features of our application are connected to one another. A goal of our integration testing would

be to make sure that the user can access all aspects of our program seamlessly without causing

any unexpected issues. Another goal of our integration tests is to ensure that each component of

our software can effectively communicate and work with each other without crashing or creating

errors. In order to achieve this, our integration testing will start by analyzing the inputs and

outputs of all our Javascript and Python functions. This way, we can rest assured knowing that

the transmission of our data is not an area of concern.

As a team, we have come up with many different integration tests. The first test that we will

conduct revolves around our PostgreSQL database and the Django framework. Our team needs

to ensure that when somebody attempts to login, query results are being sent over to Django. In

order to test this, we will display all the responses from the PostgreSQL database in our Django

framework. This test is important because we don’t want registered accounts to get an error when

trying to login, preventing them from using the rest of our pipeline. We also need to make sure

that only registered accounts in our database get access to the main page. In order to test this, our

team will try to login with various usernames and passwords to see if we can bypass the code

logic. This test is extremely important because once we transfer our website to the public

domain, anybody with the URL link would theoretically be able to access all portions of our

website regardless of whether or not they have an account.

The second integration test that we will conduct is on the logout component. The logout

component will communicate with the main page and the welcome page. This component needs

to be able to restrict the users' access to the main page and bring them back to the welcome

screen, further protecting the program pipeline. In order for our team to conduct this test, we will

attempt to login and logout of various valid accounts. After conducting that, we will then check

to see if we can access other portions of our website through buttons and direct URL links. In

order to make sure that this integration test is being conducted accurately, we need to print the

logged-in user’s information at various points in our program. This way, we are sure that the user

has the correct credentials to access our website as well as ensuring that they cannot access any

aspects of our website illegally.

Our third integration test that we will conduct works on the prediction page of our program. This

integration test will ensure users that they cannot access any aspects of our pipeline directly. This

test is important because the user would be able to crash one of our website pages if the

prediction is run without any data selected. In order to test this, our team will try to input various

keyboard commands and mouse clicks throughout the main page to see if there are any

vulnerabilities. We will also try to hardcode the prediction page URL into our browser to see if

we can get illegal access to the prediction page.

Our fourth and final integration test will check to see if the frontend data from the main page is

being accurately sent over to our backend scripts. The goal of this test is to make sure that all

coordinates and years that have been selected are transferred when the user attempts to run the

prediction. In order to conduct this integration test, we will add print statements that display the

year selected as well as the polygon’s coordinates in both our frontend Javascript and our

backend Python. This integration test is important because we want to ensure users that our

frontend code can accurately and efficiently communicate with the backend code.

After conducting these four integration tests, our program's components should be connected and

communicating as intended. After we successfully test and debug all the aspects of our

integration tests, our program will be one step closer to a finished product.

Usability Testing
Usability testing is testing that focuses specifically on the interactions between the software

system and the end user. It is meant to ensure that the users are able to effectively use the

software and access its functionality. This works by having users test our system and provide

feedback on certain features or areas that need improvement and other features that they feel are

executed well.

To begin the usability testing, we will first consider what types of users our software will be

providing functionality to. Our software is first and foremost a tool to determine the estimated

amount of carbon credits someone can receive if they choose to reforest a specific plot of land,

and the system is also secured so that only authenticated users will have access to the software.

Therefore, the users that we can expect to be using our software must be somewhat experienced

in the carbon credit market, reforestation industry, and/or carbon emission research. These types

of users will have a clear understanding of the functionality that our software provides, and in

turn, they will be looking for specific data results when using our software. Given this user

background, we will be able to conduct our usability testing accordingly to receive the best

feedback.

The first set of users that we will have test our software will be chosen from a group of users that

have a strong background in reforestation, carbon emissions, carbon uptake, carbon credits, and

similar backgrounds. These individuals will already have an idea in mind of what our software

should look like based on their pre-existing knowledge in these areas. Before they are able to use

the software, we will have them explain to us how they would like the software to be

implemented, so as to avoid any bias once we start testing. This will help us understand what the

experienced user will expect when they are going to use our software. This user group will be

extremely beneficial to our usability testing, as they will be the main set of users who will use

our product.

The second set of users that we will have test our software will be chosen from an average group

of users, who do not have a background in any of the areas mentioned above in the first group.

They will have little to no experience dealing with carbon credits or reforestation, and will be

using our software for the first time with no expectations or previous knowledge. We will give

them an overall introduction to our product and what it does, but we will not explain how to use

any of the features. This testing will help us understand what the average user expects from our

software, and they will be able to provide certain insight that the first group of users might

overlook. This could be very simple things such as button placement, popups, and overall ease of

use. This user group will also be very beneficial to our usability testing because they will provide

better insight into exactly how the software functions, without being biased about what data the

software is returning.

For each of the group tests we will be conducting, we will conduct and measure the testing as

follows:

1. The team will meet at the SICCS building with the group of users.

2. A room will be reserved for the testing so that the user is not distracted.

3. The user will be given some information about the software product.

a. For group 1, we will provide information about what software result is being

returned to the user, how this data is extracted, and how the toolbar works.

b. For group 2, we will provide only basic information to the user, that being what

the overall point of the software is, and some basic information on the toolbar.

4. As the user is testing the product, we will ask them to use the “think aloud method”

where they will talk aloud about everything they are doing and thinking as they are using

the product. This allows us to have a great deal of insight as to the user thought process

when they are using the product.

5. The team will be writing down notes and recommendations about what the user says as

they are testing the product.

6. Once the user feels they have a good understanding of the software, we will ask them

directly how they feel about certain features and aspects of the product. The team

members will be taking notes and asking follow up questions if needed.

7. Once the testing is complete, we will thank the users for their time, and finish the

usability testing.

The usability testing plan for our product involves a wide range of users that will allow our

group to receive feedback from multiple perspectives and points of view. This will be very

beneficial to the development of our software, as we will be able to adjust the software as needed

to improve the overall ease of use and accessibility. This will happen in the next couple of

weeks, so we will have enough time to implement new features or adjust existing features as

needed.

Conclusion
With our sponsor's research findings and the proof-of-concept tool that they developed, our team

has been tasked with developing a robust and user-friendly tool that brings much-needed

transparency and accessibility to the carbon market.

In order to ensure the accuracy, reliability, and security of our solution, we recognize the need for

comprehensive software testing. Software testing is a crucial aspect of software development that

evaluates the quality, functionality, and effectiveness of software applications. Our testing suite

will encompass a range of tests, from login access to data consistency across the entire project.

Our primary focus is on ensuring the security and privacy of user login information, preventing

unauthorized access to our service, and computing accurate reforestation statistics so as not to

mislead our users.

On the front end of the project, we will conduct extensive testing to verify the accuracy of

polygon coordinates, areas, and year selection. In the back end, we will test to ensure that the

polygon cut out of the raster matches the received sliver of the raster and that the average value

of the raster sliver is accurate. Due to the automated nature of many aspects of our program,

much of our testing will have to be done manually to ensure proper coordination between

different components of the software. In summary, our goal is to develop a reliable, efficient, and

secure tool that meets the needs of users and facilitates greater accessibility to the carbon market.

